Micro-Fabrication of Components for a High-Density Sub-Retinal Visual Prosthesis
نویسندگان
چکیده
منابع مشابه
Photovoltaic Retinal Prosthesis with High Pixel Density
Retinal degenerative diseases lead to blindness due to loss of the "image capturing" photoreceptors, while neurons in the "image processing" inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil...
متن کاملHigh-Fidelity Reproduction of Spatiotemporal Visual Signals for Retinal Prosthesis
Natural vision relies on spatiotemporal patterns of electrical activity in the retina. We investigated the feasibility of veridically reproducing such patterns with epiretinal prostheses. Multielectrode recordings and visual and electrical stimulation were performed on populations of identified ganglion cells in isolated peripheral primate retina. Electrical stimulation patterns were designed t...
متن کاملPhotovoltaic retinal prosthesis: implant fabrication and performance.
The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pul...
متن کاملEncapsulation of Electronic Components for a Retinal Prosthesis
Long-term success of an implantable retinal prosthesis depends on the ability to hermetically seal sensitive electronics from a saline environment with an encapsulant material. Furthermore, the retinal implant project's proposed laser-driven prosthesis requires that the encapsulation material be transparent. The device itself has two components that must protrude out of the encapsulation materi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Micromachines
سال: 2020
ISSN: 2072-666X
DOI: 10.3390/mi11100944